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The structure and the properties of complex networks essentially depend on the way nodes get connected to
each other. We assume here that each node has a feature which attracts the others. We model the situation by
assigning two numbers to each node,v anda, wherev indicates some property of the node anda the affinity
towards that property. A nodeA is more likely to establish a connection with a nodeB if B has a high value of
v and A has a high value ofa. Simple computer simulations show that networks built according to this
principle have a degree distribution with a power-law tail, whose exponent is determined only by the nodes
with the largest value of the affinitya sthe “extremists”d. This means that the extremists lead the formation
process of the network and manage to shape the final topology of the system. The latter phenomenon may have
implications in the study of social networks and in epidemiology.
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The study of complex networks is currently one of the
hottest fields of modern physicsf1–3g. A network sor graphd
is a set of items, calledverticesor nodes, with connections
between them, callededges. Nodes linked by an edge are
neighbors and the number of neighbors of a node is called
degree. Complex weblike structures describe a wide variety
of systems of high technological and intellectual importance.
Examples are the Internet, the World Wide WebsWWWd,
social networks of acquaintance, or other connections be-
tween individuals, neural networks, food webs, citation net-
works, and many others.

One of the crucial questions concerns the formation of
these structures. Complex networks are in general systems in
evolution, with new nodes/edges that get formed and old
ones that get removed or destroyed. The currently accepted
mechanism finds its roots in an old idea of Pricef4g, based
on the so-called preferential attachment, which means that a
newly formed nodeA builds an edge with a preexisting node
with a probability that is proportional to the degree of the
latter node. Networks constructed in this wayf5–7g have a
degree distribution with a power-law tail, as observed in real
networks. This simple rule, however, makes implicitly the
strong assumption that each node is at any time informed
about the degree of all other nodes, which is certainly not
true, especially for gigantic systems which contain many
millions of nodes, like the WWW. We rather believe that the
key behind the building of a connection between a pair of
nodes lies essentially in the mutual interaction of the two
nodessalmostd independently of the rest of the system: two
persons usually become friends because they like each other.

In this paper we have social networks in mind, but nev-
ertheless we will speak generally about networks, as we be-
lieve that our model has a more general validity. The mecha-
nism we propose is that any node has somepropertysbeauty,
richness, power, etc.d by which the others areattracted. We
indicate the property with a positive numberv, the attrac-
tiveness by another positive numbera. We assume that high
values ofv correspond to a high degree of the propertysthe

most beautiful people, for instanced. Both v and a are at-
tributes of single nodes/individuals, so they take in general
different values for different nodes. What we need is a
knowledge of the distribution ofv anda in the network. For
the propertyv, distributions that vanish for high values ofv,
like exponentials or power laws, are realistic. As far as the
affinity a is concerned, it is less clear which distributions can
be considered plausible, therefore we tested several possibili-
ties. We remark that the idea that the nodes have individual
appeal already exists in the literature on complex networks.
Bianconi and Barabásif8g assigned a parameterh called
“fitness” to each node of the network and the linking prob-
ability becomes proportional to the product of the degree
with the fitness of the target node. In the same framework,
Ergün and Rodgersf9g proposed a different ansatz for the
linking probability, which in their case is proportional to the
sum of the fitness and the degree of the target node. Both
models, however, are based on preferential attachment. Cal-
darelli et al. f10g proposed instead a variation of the fitness
theme which eliminates preferential attachment, so that the
formation principle of networks lies in the attraction nodes
exert on each other by virtue of their individual quality/
importance, which is actually in the spirit of our work. So, in
f10g, the linking probability is simply a function of the fit-
ness values of the pair of nodes, and several possible choices
for this function are introduced and discussed.

Our expression for the probabilitypAB of a nodeA to
build an edge with a nodeB is also a function of the indi-
vidual attributes of the nodes,v anda. We adopt the ansatz

pAB =
cB

ffsvBdgaA
, s1d

wherecB is a normalization constant andfsvd the distribu-
tion function of the propertyv, whereas we will indicate
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with csad the distribution function of the affinitya. Whats1d
says is that the pairing probability is inversely proportional
to the relative frequency of the propertyv in the network.
Thinking again of a social system, the idea is that there is a
general tendency to be more attracted by those subjects who
are characterized by high values ofv. In a network of sexual
relationships, for instance, the best looking people usually
have the greatest chances to be chosen as sexual partners. We
believe that the choices of the people are not influenced by
the absolute importance ofv, which is a vague and abstract
concept, but rather by the perception of the importance of the
propertyv within the society, which is related to its distri-
bution. This is why we associated the pairing probability to
the relative frequencyfsvd and not directly tov, at variance
with f10g. Accordingly, the largerv, the lower the occur-
rencefsvd of that degree of the property in the network, and
the edge-building probability gets higher. On the other hand,
for a given nodeB, characterized by its propertyvB, the
other nodes will feel an attraction towardsB, which varies
from one subject to another. This modulation of the indi-
vidual attraction is expressed by the exponentaA in s1d. The
probability pAB increases withaA, justifying the denomina-
tion of “affinity” we have given to the parametera. The
parametera must be taken in the rangef0, 1g for normaliza-
tion purposesf11g. The normalization constantcB must be
chosen such that the sum of the bond probabilitypAB over all
stargetd nodesB be one, socB only depends on the number of
nodesN and the affinityaA. We also remark that the expres-
sions1d is not symmetric with respect to the inversionA↔B.
Most mechanisms of network growth, including that of
Barabási and Albert, distinguish between the active node and
the target node. This does not necessarily mean that the links
are directed from the active to the target node; however, in
this paper we will distinguish between in degrees and out
degrees and when we speak of degree distribution, we mean
the distribution of the in degreessthe out-degree distribution
is a constant functiond.

Our simple model is a generalization of the so-called
“Cameo principle,” which has recently been introduced by
two of the authorsf12g. There, the affinitya was the same
for all nodes and there was consequently no correlation be-
tween pairs of nodes. In this case it was rigorously proven
that the network has indeed a degree distribution with a
power-law tail and that the exponentg is a simple function
of a; more precisely,

sid if fsvd decreases as a power law with exponentb
whenv→` , g=1+1/a−1/ab;

sii d if fsvd vanishes faster than any power law whenv
→` , g=1+1/a.

We remark that the only feature of the distributionfsvd
that plays a role for the exponent of the resulting degree
distribution is the wayfsvd vanishes at infinity; the behavior
for low and intermediate values ofv can be arbitrarily cho-
sen. This gives the result a wide degree of generality, which
might explain why power-law degree distributions occur so
frequently in real-world networks. Besides, the exponentg
does not depend on the value of the out degreem.

We also remark that the Cameo principle extends the con-
cept of the random graph introduced by Erdös and Rényi,

which is obtained in the limit whena→0 for all nodes of the
network. In a sense, our approach adds to the random graph’s
realistic features, which could make it suitable for applica-
tions f13g. The presence of the random variablev in the
standard Cameo principle completely changes the degree dis-
tribution of the graph, from PoissoniansErdös and Rényid to
scale-freesCameod. In the same way, the presence of the
other random variablea, whose stochastic character is nec-
essary for any realistic application of the model, could also
deeply alter fundamental features of the network.

We studied our model numerically, by means of Monte
Carlo simulations. In order to build the network we pick up a
nodeA and buildm edges with the other nodes of the net-
work, with probability given bys1d. The procedure is then
repeated for all other nodes of the network. We remark that
our construction process is static, i.e., all nodes of the net-
work are there from the beginning of the process and neither
nodes are added nor destroyed. However, the principle can as
well be implemented in a dynamical way, with new nodes
that are progressively added to the networkf12g.

We fixed the out degreem to the same value for all nodes,
as it is done in the model of Barabási and Albertf5g swe set
m=100d. The numberN of nodes was always 106.

We have always used a simple exponential forfsvd. Fig-
ure 1 shows the cumulative degree distribution of the net-
work constructed with a uniform affinity distributioncsad
=const., fora in the rangef0, 0.7g. The cumulative distribu-
tion is the integral of the normal distribution. So, for a value
k of the degree we counted how many nodes have a degree
larger thank. The summation reduces fluctuations consider-
ably and the analysis gets easier. If the degree distribution is
a power law with exponentg, its integral will be again a
power law but with exponentg−1.

In Fig. 1 we see that indeed the cumulative distribution
ends as a straight line in a double-logarithmic plot, so it has
a power-law tail. We performed many trials, by varying the
range of the uniform distributioncsad, and by using other
kinds of distribution functions fora, like Gaussians, expo-

FIG. 1. Cumulative degree distribution for a network where
fswd=e−v and csad is constant in f0, 0.7g. In the double-
logarithmic scale of the plot a power-law tail would appear as a
straight line, as in the figure.
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nentials, and power laws. We found that the result holds in
all cases we considered. Beware that the use of Gaussians
and exponentials does not mean thata can go to infinity, as
it must be confined within the intervalf0:1g; we just mean to
consider distributions that fall like Gaussians and exponen-
tials within this intervalsthey actually are “truncated” Gaus-
sians and exponentialsd.

Another striking feature of our findings is shown in Fig. 2.
Here we plot the cumulative degree distributions for two
networks, wherecsad is uniform, and we chose the affinity
ranges such that they share the same upper limitamax sf0,
0.8g and f0.5, 0.8g, respectively, soamax=0.8d. We see that
the tails of the two curves have the same slope, which sug-
gests thatg only depends onamax. We repeated this experi-
ment several times for different ranges and taking as well
truncated exponential and truncated Gaussian distributions
for a. In Fig. 3 we compare the upper curve of Fig. 2, which
corresponds to a uniform affinity distribution inf0.5:0.8g,
with a simple exponential distribution in the rangef0:0.8g.
The upper limits of the two ranges coincide, and the plot
shows clearly that the tails of the two degree distributions
have the same slope. It would be interesting to check what
happens if the affinity distribution vanishes continuously at
the upper limit of the interval where it is defined. Unfortu-
nately, the results of some tests we have performed show that
to get reliable results one must go to much largerN, as in this
case only a few nodes carry values ofa close toamax. The
distribution we had used was

csad = 2, 0ø a ø 1/3;

csad = 4 − 6a, 1/3ø a ø 2/3;

csad = 0, 2/3ø a ø 1.

We found that the slope of the resulting degree distribu-
tion is not steady ifN is increased from 100 000 to 200 000
and finally to 1 000 000, which suggests that much larger

sizes must be taken to safely extrapolate the result in the
limit N→`. So, we were not able to determine what happens
when the mass of the affinity distribution is zero at the upper
extremeamax.

Figure 4 shows how the exponentg−1 of the cumulative
degree distribution varies withamax. The pattern of the data
points follows a hyperbolaa/amax, with a coefficient a
=1.29; this is very close to what one gets for the original
Cameo principlef12g, whereg−1=1/a. It is likely that in
the limit of infinite nodes the coefficient would indeed con-
verge to one. Sinceamax can be chosen arbitrarily close to
zero, from the ansatza/amax we deduce that, within our
model, we are able to build networks with any value ofg
greater thansaboutd 2. This is fine, as for the great majority
of complex networksgù2 as well.

So, we have discovered that the nodes with the highest
affinity a, that we call “extremists” for obvious reasons, are
responsible for the exponentg of the power-law tail of the

FIG. 2. Cumulative degree distribution for two networks char-
acterized by uniform distributionscsad. The upper limit of thea
range is the same in both cases. The power-law tails have the same
slope.

FIG. 3. Cumulative degree distribution for two networks char-
acterized, respectively, by a uniform distribution ofa in f0.5:0.8g
supper curve of Fig. 2d and by an exponential distributionfsad
=C exps−ad, defined inf0:0.8g sC is a normalization constantd. The
power-law tails have the same slope.

FIG. 4. Dependence of the exponentg−1 of the cumulative
degree distribution on the upper limitamax of the affinity range. The
data points can be fitted by the simple ansatza/amax.
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degree distribution of the network. We found that this state-
ment is true for several choices of the distributioncsad. In
all our trials, however, the probability density at the upper
bound of the affinity range was always different from zero.
We do not know yet if and how the picture changes when the
probability density vanishes at the extremum.

To translate our finding into a practical context, we can
consider as an example a terrorism network. The leaders of
the groupsthose with highest charisma/vd are the hubs of
the network, i.e., the most connected individuals, but their
relative importance is determined by the most fanatic follow-
erssthose with largestad. We have then shown that there is a
sort of time-dependent hierarchy among the nodes: the ex-
tremists lead the formation process, the hubs dominate the
structure once the network is built.

Based on the analytical derivation off12g, we can give an
argument that may justify the result of this work. Let us
consider the simple case of a discrete distributionCsad of
the form

Csad = o
i=1

m

lidsa − aid, s2d

with li .0 andoi=1
m li =1. So, the fraction of nodesx with

asxd=ai is li .0. The validity of the result lies in the fact
that the global degree distribution is given by a superposition
of the degree distributions associated with nodes with the
sameai. Since each of those distribution has a power-law tail
f12g, the overlap is dominated by the term having the fattest
tail, i.e., the smallest exponentg, which corresponds to the
maximumamax of the a’s, due to the relationg=1+1/a. In
this way, any function can be considered as the limit of a
sum like s2d, when the number of terms goes to infinity.
Indeed, the same result emerges if we randomize the model
of Barabási-Albert, in that a new node can choose to makem
links with preexisting nodes, withm being a discrete random
variable instead of a constant. In this case, like in ours, it is
easy to show that the exponent of the degree distribution
depends on the maximum valuemmax that the random vari-
ablem can take.

We know that the exponentg is a crucial feature of com-
plex networks in many respects. For epidemic spreading, for
example, there is no nonzero epidemic thresholdf14g so long
asgø3, which would have catastrophic consequences. If the
network is in evolution, to control the extremists would

mean to be able to exert an influence on the future topology
of the network, which can be crucial in many circumstances.

From a practical point of view, it is not obvious how to
model things like attractivenesssor fitnessd, which usually
are out of the domain of quantitative scientific investigations.
However, our result on the leading role of the extremists is
quite robust, as it does not depend on the specific function
csad that one decides to adopt.

In conclusion, we have introduced a simple criterion for
the nodes of a complex network to choose each other as
terminals of mutual connections: each node has a propertyv
which attracts the other nodes to an extent that depends on
another individual parametera. Networks built in this way
are always characterized by a degree distribution with a
power-law tail. We remark that this generalization of the re-
sult presented inf12g is much more fundamental than the
original “Cameo principle”; it is the only possible implemen-
tation of the principle to real systems, as in real populations
people have individual attitudes, and there is noa priori
reason why it should work. The regular appearance of
power-law degree distributions in spite of our freedom to
choose the two functionsCsvd and fsad suggests that our
simple procedure may have to do with the general principle
responsible of the evolution of real networks. Moreover, we
hit another nontrivial result which may have far-reaching im-
plications, i.e., the fact that the exponent of the power law
seems to be determined uniquely by those nodes that are
most sensible to the propertyv, except perhaps when the
relative fraction of these nodes vanishes. Acting on such
nodes could be an effective way to control the structure of
evolving networks.

As we said in our introduction, the aim of this work was
to devise a simple mechanism of network growth which
could take into account general reasonable features of social
systems. We did not have any concrete network in mind, as
we hoped to define a principle of a possibly wide applicabil-
ity f15g. The results we gathered in this first phase of our
research line seem to us very promising, and in the immedi-
ate future we plan to devise concrete models, inspired by our
mechanism, to look for a quantitative matching with real
data.
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