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Importance of extremists for the structure of social networks
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The structure and the properties of complex networks essentially depend on the way nodes get connected to
each other. We assume here that each node has a feature which attracts the others. We model the situation by
assigning two numbers to each nodeand «, wherew indicates some property of the node anthe affinity
towards that property. A nodkis more likely to establish a connection with a nd@lé B has a high value of
o and A has a high value ofv. Simple computer simulations show that networks built according to this
principle have a degree distribution with a power-law tail, whose exponent is determined only by the nodes
with the largest value of the affinityw (the “extremistsy. This means that the extremists lead the formation
process of the network and manage to shape the final topology of the system. The latter phenomenon may have
implications in the study of social networks and in epidemiology.
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The study of complex networks is currently one of themost beautiful people, for instanceBoth w and « are at-
hottest fields of modern physi¢$—3]. A network (or graph tributes of single nodes/individuals, so they take in general
is a set of items, calledlerticesor nodes with connections different values for different nodes. What we need is a
between them, calleédges Nodes linked by an edge are knowledge of the distribution ab and« in the network. For
neighbors and the number of neighbors of a node is calleghe propertyw, distributions that vanish for high values @f
degree Complex weblike structures describe a wide variety|ike exponentials or power laws, are realistic. As far as the
of systems of high technological and intellectual importancegffinity « is concerned, it is less clear which distributions can
Examples are the Internet, the World Wide WeNWW),  pe considered plausible, therefore we tested several possibili-
social networks of acquaintance, or other connections béeg e remark that the idea that the nodes have individual

tween individuals, neural networks, food webs, citation nEt'appeal already exists in the literature on complex networks.
works, and many others.

One of the crucial questions concerns the formation o lanconi and Barabaqi8] assigned a parametey called

these structures. Complex networks are in general systems iFg.T.eSSb fo each node O.f thel netV\r/]ork an(;j the Iml;]mgdprob-
evolution, with new nodes/edges that get formed and oldtllity becomes proportional to the product of the degree
ones that get removed or destroyed. The currently accept |th"the fitness of the target node. I_n the same framework,
mechanism finds its roots in an old idea of Priéé based Ergun and Rodgerg9] proposed a different ansatz for the
on the so-called preferential attachment, which means that #'king probability, which in their case is proportional to the
newly formed node? builds an edge with a preexisting node Sum of the fitness and the degree of the target node. Both
with a probability that is proportional to the degree of themodels, however, are based on preferential attachment. Cal-
latter node. Networks constructed in this wi@-7] have a  darelliet al. [10] proposed instead a variation of the fitness
degree distribution with a power-law tail, as observed in reatheme which eliminates preferential attachment, so that the
networks. This simple rule, however, makes implicitly the formation principle of networks lies in the attraction nodes
strong assumption that each node is at any time informeéxert on each other by virtue of their individual quality/
about the degree of all other nodes, which is certainly notmportance, which is actually in the spirit of our work. So, in
true, especially for gigantic systems which contain many[10], the linking probability is simply a function of the fit-
millions of nodes, like the WWW. We rather believe that the ness values of the pair of nodes, and several possible choices
key behind the building of a connection between a pair offor this function are introduced and discussed.
nodes lies essentially in the mutual interaction of the two Our expression for the probabilitgyg of a nodeA to
nodes(almos) independently of the rest of the system: two build an edge with a nodB is also a function of the indi-
persons usually become friends because they like each oth&tdual attributes of the nodes and . We adopt the ansatz

In this paper we have social networks in mind, but nev-
ertheless we will speak generally about networks, as we be-
lieve that our model has a more general validity. The mecha- _ Cs
nism we propose is that any node has sqmuperty (beauty, Pag= [p(wg)]™’
richness, power, etcby which the others arattracted We
indicate the property with a positive number the attrac-
tiveness by another positive numherWe assume that high wherecg is a normalization constant an{w) the distribu-
values ofw correspond to a high degree of the propdthe  tion function of the propertyw, whereas we will indicate
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with () the distribution function of the affinitw. What(1) 108 . . ' '
says is that the pairing probability is inversely proportional 107 [+
to the relative frequency of the property in the network. o
Thinking again of a social system, the idea is that there is ag 108 L "
general tendency to be more attracted by those subjects wh3
are characterized by high values«@fIn a network of sexual 105
relationships, for instance, the best looking people usuallyd g4 [
have the greatest chances to be chosen as sexual partners. \2 T
believe that the choices of the people are not influenced by 10° |
the absolute importance ef, which is a vague and abstract 5 102 L
concept, but rather by the perception of the importance of the®
property w within the society, which is related to its distri- 107 F T
bution. This is why we associated the pairing probability to 0 . . . .
the relative frequency(w) and not directly taw, at variance 0 102 103 104 105 106 107
with [10]. Accordingly, the larger, the lower the occur- Degree
rence¢(w) of that degree of the property in the network, and
the edge-building probability gets higher. On the other hand, FIG. 1. Cumulative degree distribution for a network where
for a given nodeB, characterized by its propertyg, the  ¢(w)=e® and y(a) is constant in[0, 0.7. In the double-
other nodes will feel an attraction towar@s which varies logarithmic scale of the plot a power-law tail would appear as a
from one subject to another. This modulation of the indi-straight line, as in the figure.
vidual attraction is expressed by the exponegin (1). The
probability pag increases withw,, justifying the denomina-  which is obtained in the limit when — 0 for all nodes of the
tion of “affinity” we have given to the parameter. The  network. In a sense, our approach adds to the random graph’s
parameter must be taken in the rand®, 1] for normaliza-  realistic features, which could make it suitable for applica-
tion purposed11]. The normalization constamz must be  tions [13]. The presence of the random variakdein the
chosen such that the sum of the bond probabijjy over all  standard Cameo principle completely changes the degree dis-
(targed nodesB be one, sey only depends on the number of tribution of the graph, from Poissonid&rdos and Rényito
nodesN and the affinitye,. We also remark that the expres- scale-free(Camed. In the same way, the presence of the
sion(1) is not symmetric with respect to the inversidn- B. other random variabler, whose stochastic character is nec-
Most mechanisms of network growth, including that of essary for any realistic application of the model, could also
Barabasi and Albert, distinguish between the active node andeeply alter fundamental features of the network.
the target node. This does not necessarily mean that the links We studied our model numerically, by means of Monte
are directed from the active to the target node; however, irCarlo simulations. In order to build the network we pick up a
this paper we will distinguish between in degrees and ouhodeA and buildm edges with the other nodes of the net-
degrees and when we speak of degree distribution, we meamork, with probability given by(1). The procedure is then
the distribution of the in degredthe out-degree distribution repeated for all other nodes of the network. We remark that
is a constant function our construction process is static, i.e., all nodes of the net-
Our simple model is a generalization of the so-calledwork are there from the beginning of the process and neither
“Cameo principle,” which has recently been introduced bynodes are added nor destroyed. However, the principle can as
two of the authorg12]. There, the affinityw was the same well be implemented in a dynamical way, with new nodes
for all nodes and there was consequently no correlation behat are progressively added to the netwtR].
tween pairs of nodes. In this case it was rigorously proven We fixed the out degrem to the same value for all nodes,
that the network has indeed a degree distribution with aas it is done in the model of Barabasi and Albért (we set
power-law tail and that the exponeftis a simple function m=100. The numbeN of nodes was always £0

e distribi

of a; more precisely, We have always used a simple exponentialdtw). Fig-

(i) if ¢(w) decreases as a power law with expongnt ure 1 shows the cumulative degree distribution of the net-
whenw— o, y=1+1/a-1/ap; work constructed with a uniform affinity distributiof( )

(i) if ¢(w) vanishes faster than any power law when =const., fora in the rangd0, 0.7. The cumulative distribu-
—oo, y=1+1/ea. tion is the integral of the normal distribution. So, for a value

We remark that the only feature of the distributigiiw) k of the degree we counted how many nodes have a degree
that plays a role for the exponent of the resulting degredarger thank. The summation reduces fluctuations consider-
distribution is the wayh(w) vanishes at infinity; the behavior ably and the analysis gets easier. If the degree distribution is
for low and intermediate values of can be arbitrarily cho- a power law with exponeny, its integral will be again a
sen. This gives the result a wide degree of generality, whiclpower law but with exponeny—1.
might explain why power-law degree distributions occur so In Fig. 1 we see that indeed the cumulative distribution
frequently in real-world networks. Besides, the expongnt ends as a straight line in a double-logarithmic plot, so it has
does not depend on the value of the out degnee a power-law tail. We performed many trials, by varying the

We also remark that the Cameo principle extends the corrange of the uniform distribution/(«), and by using other
cept of the random graph introduced by Erdés and Rényikinds of distribution functions fow, like Gaussians, expo-
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FIG. 2. Cumulative degree distribution for two networks char-  FIG. 3. Cumulative degree distribution for two networks char-
acterized by uniform distributiong(a). The upper limit of thex  acterized, respectively, by a uniform distribution @fin [0.5:0.§
range is the same in both cases. The power-law tails have the sam@pper curve of Fig. Rand by an exponential distributios(a)
slope. =Cexp-a), defined in[0:0.8] (C is a normalization constantThe

power-law tails have the same slope.

nentials, and power laws. We found that the result holds in
all cases we considered. Beware that the use of Gaussiaf#es must be taken to safely extrapolate the result in the
and exponentials does not mean thatan go to infinity, as  limit N—c. So, we were not able to determine what happens
it must be confined within the intervgd: 1]; we just mean to when the mass of the affinity distribution is zero at the upper
consider distributions that fall like Gaussians and exponen€XrémMeamay. .
tials within this interval(they actually are “truncated” Gaus-  Figure 4 shows how the exponept 1 of the cumulative
sians and exponentials de_gree distribution varies withy,. The_z pattern of_the data
Another striking feature of our findings is shown in Fig. 2. Points follows a hyperbolaa/apm,, with a coefficienta
Here we plot the cumulative degree distributions for two=1-29; this is very close to what one gets for the original
networks, wheraj(a) is uniform, and we chose the affinity Cameo principlg12], wherey—1=1/a. Itis likely that in
ranges such that they share the same upper tigig ([0, the limit of infinite nodes the coefficient would indeed con-
0.8] and[0.5, 0.8, respectively, Sax,,=0.8. We see that Verge to one. Sincerma, can be chosen arbitrarily close to
the tails of the two curves have the same slope, which sugzero, from the ansata/aq, we deduce that, within our
gests thaty only depends of,. We repeated this experi- Model, we are able to build networks with any valuesof
ment several times for different ranges and taking as wel#reater thartabout 2. This is fine, as for the great majority
truncated exponential and truncated Gaussian distributiorfd COmplex networksy=2 as well. _ .
for . In Fig. 3 we compare the upper curve of Fig. 2, which SO, we have discovered that the nodes with the highest
corresponds to a uniform affinity distribution [i9.5:0.8, affinity «, that we call “extremists” for obvious reasons, are
with a simple exponential distribution in the ranf@:0.g.  'esponsible for the exponentof the power-law tail of the

The upper limits of the two ranges coincide, and the plot

shows clearly that the tails of the two degree distributions 4 RN
have the same slope. It would be interesting to check what 35 ¢ { 12905y e 1
happens if the affinity distribution vanishes continuously at 3l I . i
the upper limit of the interval where it is defined. Unfortu- .
nately, the results of some tests we have performed show the 25 { ]
to get reliable results one must go to much lafyeas in this 5l } |
case only a few nodes carry values@ftlose toa,. The < TR
distribution we had used was 151 EJE{ 1
Wa)=2, 0<a<1/3; Tr 1
05 _
Ya)=4-6a, 1lI3<a<2/3; 0 , . , , , . , ,
02 03 04 05 06 07 08 09 1 11
tﬁ(a):O, 2B3=sa<1. Omax

We found that the slope of the resulting degree distribu- FIG. 4. Dependence of the exponept1 of the cumulative
tion is not steady iN is increased from 100 000 to 200 000 degree distribution on the upper limit,,of the affinity range. The
and finally to 1 000 000, which suggests that much largedata points can be fitted by the simple ansafta,,y.
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degree distribution of the network. We found that this stateimean to be able to exert an influence on the future topology
ment is true for several choices of the distributigw). In of the network, which can be crucial in many circumstances.
all our trials, however, the probability density at the upper From a practical point of view, it is not obvious how to
bound of the affinity range was always different from zero.model things like attractiveneg®r fitness, which usually
We do not know yet if and how the picture changes when there out of the domain of quantitative scientific investigations.
probability density vanishes at the extremum. However, our result on the leading role of the extremists is
To translate our finding into a practical context, we canquite robust, as it does not depend on the specific function
consider as an example a terrorism network. The leaders af(«) that one decides to adopt.
the group(those with highest charismaj are the hubs of In conclusion, we have introduced a simple criterion for
the network, i.e., the most connected individuals, but theithe nodes of a complex network to choose each other as
relative importance is determined by the most fanatic follow-terminals of mutual connections: each node has a property
ers(those with largesty). We have then shown that there is a which attracts the other nodes to an extent that depends on
sort of time-dependent hierarchy among the nodes: the exanother individual parameter. Networks built in this way
tremists lead the formation process, the hubs dominate there always characterized by a degree distribution with a
structure once the network is built. power-law tail. We remark that this generalization of the re-
Based on the analytical derivation [df2], we can give an  sult presented if12] is much more fundamental than the
argument that may justify the result of this work. Let us original “Cameo principle”; it is the only possible implemen-
consider the simple case of a discrete distributifw) of  tation of the principle to real systems, as in real populations

the form people have individual attitudes, and there is agriori
m reason why it should work. The regular appearance of
V(a)= S Nola-a), 2 power-law degree d|§tr|but|ons in spite of our freedom to
(@) I% o= a) @ choose the two function¥(w) and ¢(«) suggests that our

) ] ] simple procedure may have to do with the general principle
with A;>0 and=Z)\=1. So, the fraction of nodes with  regponsible of the evolution of real networks. Moreover, we
a(X)=a; is \j>0. The validity of the result lies in the fact pjt another nontrivial result which may have far-reaching im-
that the global degree distribution is given by a superpositioryjications, i.e., the fact that the exponent of the power law
of the degree distributions associated with nodes with thgeems to be determined uniquely by those nodes that are
sameq;. Since each of those distribution has a power-law tailygst sensible to the property, except perhaps when the
[12], the overlap is dominated by the term having the fatteste|ative fraction of these nodes vanishes. Acting on such
tail, i.e., the smallest exponent which corresponds to the nodes could be an effective way to control the structure of
maximumamax Of the a’s, due to the relationy=1+1/a. In  eyolving networks.
this way, any function can be considered as the limit of a As we said in our introduction, the aim of this work was
sum like (2), when the number of terms goes to infinity. {5 devise a simple mechanism of network growth which
Indeed, the same result emerges if we randomize the modghy|d take into account general reasonable features of social
of Barabasi-Albert, in that a new node can choose to nmake systems. We did not have any concrete network in mind, as
|inkS W|th preexisting nOdeS, W|tm being a discrete I‘andom we hoped to deﬁne a principle Of a possib'y W|de app”cabil_
variable instead of a constant. In this case, like in ours, it isty [15]. The results we gathered in this first phase of our
easy to show that the exponent of the degree distributioResearch line seem to us very promising, and in the immedi-
depends on the maximum valuey, that the random vari-  ate future we plan to devise concrete models, inspired by our

ablem can take. _ _ mechanism, to look for a quantitative matching with real
We know that the exponentis a crucial feature of com- data.

plex networks in many respects. For epidemic spreading, for

example, there is no nonzero epidemic thresfit¥g so long S. F. gratefully acknowledges the financial support of the
asy= 3, which would have catastrophic consequences. If th&/olkswagen Foundation; T. K. acknowledges the financial
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